

SPECIFICATION

Product: 3535 Ceramic UV LED

Part No.: IWS-C3522-UV-XX5K1

Date: 2014. 12. 18 Ver. 1.0

Proposed By	Checked By	Checked By	Checked By	Approval
	결	재 완	료	

Comment			

ITSWELL Co., Ltd 58B-4L, 626-3 Gojan-dong, Namdong-gu, Incheon 405-817 KOREA TEL:+82-32-813-1910, FAX:+82+32-822-9009

URL: http://www.itswell.com

Table of Contents

< Contents >	< Page >
1. Features	3
2. Applications	3
3. Outline Drawing and Dimension	3
4. Absolute Maximum Ratings	4
5. Electro-optical Characteristics 5.1 Radiant Flux Rank 5.2 Forward Voltage Rank 5.3 Peak Wavelength Rank	4 4 4 4
6. Typical Characteristics Curves	····· 5
7. Dimension of Tape / Reel 7.1 Tape Dimension 7.2 Reel Dimension	6 6 6
8. Packing Dimension	7
9. Precaution in use 9.1 Soldering Conditions 9.2 Storage 9.3 Static Electricity 9.4 Cleaning 9.5 Heat Generation 9.6 Handling LED	8 ~ 9 8 8 8 8 8 8
10. Reliability 10.1 Reliability Test Item 10.2 Criteria for Judging the Damage	
11. Part Name Description	
12. Rank Description	
13. Attention : ESD Protection	11
14. Specification Review History	

1. Features

• SMD Ceramic Package with Silicone Lens

• Small Size High-flux LED : 3.5 x 3.5 x 2.0mm

• Wide Viewing Angle: 130°

2. Applications

· Architectural Lighting

• Decorative and Entertainment Lighting

Curing System

· General Lighting

3. Outline Drawing and Dimension

Note

- 1. All dimensions are in millimeters
- 2. All dimensions without tolerances are for reference only

4. Absolute Maximum Ratings (Ta = 25 $^{\circ}$ C)

Parameter	Symbol	Value	Unit
Power Dissipation per Chip	P _d	2.8	W
Continuous Forward Current	I _F	700	mA
Peak Forward Current *1	I _{FP}	1000	mA
Operating Temperature	T _{opr}	-30 ~ 85	$^{\circ}$
Storage Temperature	T _{stg}	-40 ~ 100	$^{\circ}$
Soldering Temperature	T _{sol}	260 (5sec)	$^{\circ}$
Thermal Resistance	R _{thj-s}	8	K/W

^{*1} Duty ratio = 1/10, Pulse width = 10ms

5. Electrical & Optical Characteristics (Ta: 25℃)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit.
Forward Voltage *2	V_{F}	I _F = 500 mA	3.4	-	4.0	V
Reverse Voltage	V_{RZ}	$I_R = 5 \text{ mA}$	0.7	0.8	1.5	V
Radiant Flux *3	Фе	I _F = 500 mA	500	-	1,100	mW
			360	-	370	
Dook Woyalanath *4	107	L = 500 m A	380	-	390	
Peak Wavelength *4	W_P	I _F = 500 mA	390	-	400	nm
			400	-	410	
Viewing Angle *5	201/2	I _F = 500 mA	-	130	-	deg.

^{**2} Forward Voltage has a tolerance of $\pm 0.05 \text{ V}$.

5.1 Radiant Flux Rank

Rank	Radiant Flux (mW)	Remark	
E	500 ~ 600	265nm	
F	600 ~ 700	365nm	
G	700 ~ 800		
Н	800 ~ 900	385nm	
J	900 ~ 1,000	395nm 405nm	
K	1,000 ~ 1,100		

5.2 Forward Voltage Rank

Rank	Forward Voltage (V)	Remark
4	3.4 ~ 3.6	
5	3.6 ~ 3.8	-
6	3.8 ~ 4.0	

5.3 Peak Wavelength Rank

Rank	Peak Wavelength (nm)	Remark
Α	360 ~ 370	-
В	380 ~ 390	-
С	390 ~ 400	-
D	400 ~ 410	-

IWS-C3522-UV-XX5K1	Version of 1.0	PAGE: 4 / 12
--------------------	----------------	--------------

^{**3} Radiant Flux is measured with an integrating sphere and has an accuracy of 10%.

^{*4} Peak Wavelength has an accuracy of ±2nm

^{*5} Viewing Angle is the angle until 50% of brightness measured from the front part of LED.

6. Typical Characteristic Curve

Version of 1.0

PAGE: 5 / 12

IWS-C3522-UV-XX5K1

7. Dimension of Tape / Reel

7.1 Tape Dimension

8. Packing Dimension

< Unit :mm >

	Dimensions (mm)	Reel / Box	Q'ty / Box(pcs)
Reel	Diameter : Ф180 Width : 15mm	Ī	500 Max
Al Shield Bag	250 x 220	Ι	500 Max
Card board Box	224 x 150 x 226	8 Max	4,000 Max

IWS-C3522-UV-XX5K1	Version of 1.0	PAGE: 7 / 12
--------------------	----------------	--------------

9. Precaution in use

9.1 Soldering Conditions

- When soldering Power SMD, Heat may affect the electrical and optical characteristics of the LEDs.
- In soldering, do not stress the lead frame and the resin part under the high temperature.
- The silicone part should be protected from mechanical stress or vibration until the Power SMD return to room temperature after soldering.
- Preliminary heating to be at 160 °C max. for 120 Seconds max.
- Soldering heat to be at 260 °C max. for 5 sec. Max.
- For manual Soldering is Not more than 3 sec @MAX 350 °C, under soldering iron

9.2 Storage

- Before opening the package, the LEDs should be kept at 30 °C or less and 70%RH or less.
- The LEDs should be used within a year.
- After opening the package, the LEDs should be kept at 30 °C or less and 30%RH or less.
- The LEDs should be used within 572 hours (4 Week) after opening the package.
- If the moisture absorbent material (silicagel) has faded away or the LED have exceeded the storage time, baking treatment should be performed using the following conditions. Baking treatment: $60\%\pm5$ for 48 hours.

9.3 Static Electricity

- Static electricity or surge voltage damages the Power SMD. It is recommended that a wrist band or an anti-electrostatic glove be used when handling the LEDs.
- A tip soldering iron is requested to be grounded. An ionizer should also be installed where risk of static.
- All devices, equipment and machinery must be properly grounded (via $1M\Omega$). It is recommended that measures be taken against surge voltage to the equipment that mounts the Power SMD.

9.4 Cleaning

- Isopropyl Alcohol or Ethylene Alcohol is recommended in 5 minutes at room temperature.

 Don't use unspecified chemical may cause crack or haze on the surface of the silicone resin.
- Before cleaning, a pre-test should be done to confirm whether any damage to the LED will occur.
- Freon solvents should not be used to clean the LEDs because of worldwide regulations.

9.5 Heat Generation

- When the LEDs are illuminating, operating current should be decided after being considering the ambient maximum temperature.
- Please consider the heat generation of the LED when it is designed the PCB.
- The LED's must be mounted on MCPCB or heat sink or applied thermal pad.

IWS-C3522-UV-XX5K1	Version of 1.0	PAGE: 8 / 12
--------------------	----------------	--------------

9.6 Handling LED

ITSWELL recommends the following at all times when handling C3522 LEDs or assemblies containing these LEDs:

- When handling the LED with tools like Tweezers or Nipper, do not apply Mechanical Forces directly on LED's Surface.
- Do not touch with hand LED Lens surface directly. It may contaminate the Lens surface and affect on optical characteristics.
- LED should be handled from side because LED's molding material may be damaged with scratching on surface, piercing molding material and broking wire.

Incorrect Handling

Correct Handling

- Do not apply more than 1000gf of shear force onto the lens. It will cause fatal damage of this product.
- Do not stack assembled PCBs together. Failure to comply may cause the resin portion of the product to be cut, chipped, delaminated, deformed, and/or the die/wire bonds to break, which will causes the LEDs not to illuminate.

Incorrect Handling

IWS-C3522-UV-XX5K1	Version of 1.0	PAGE: 9 / 12
--------------------	----------------	--------------

10. Reliability

10.1 Reliability Test Item

Test Items	Test Conditions	Notes
High Temperature Storage	100℃, 1,000hr.	0/10
Low Temperature Storage	-40℃, 1,000hr.	0/10
Temp. Humidity Storage	60℃, 90% RH, 1,000hr.	0/10
Steady State Operating life	25℃, 500mA , 1,000hr.	0/10
High Temperature Operating Life	85℃, 350mA, 1,000hr	0/10
Low Temperature Operating Life	-30℃, 500mA, 1,000hr.	0/10
Steady State Operating life Of High Humidity Heat	60℃, 90% RH, 350mA, 1,000hr.	0/10
Thermal Shock	-40 °C (30min)→100 °C (30min.), 100 cycle	0/10
ESD	HBM, 100 pF, 1.5K ohm, 3 times	0/10

10.2 Criteria for Judging the Damage

Items	Test Conditions	Criteria for judgment
Radiant Flux (Φ _e)	I _F = 500mA	> 70% of S
Forward Voltage (V _F)	I _F = 500mA	Less than ± 110% of U

^{*} U means the upper limit of specified characteristics, S means initial value.

IWS-C3522-UV-XX5K1	Version of 1.0	PAGE:10 / 12
--------------------	----------------	--------------

IW: ITSWELL Co., Ltd. (Company Name)

12. Rank Description

13. Attention : Electric Static Discharge (ESD) Protection

The symbol shown on the page herein to introduce 'Electro-Optical Characteristics'. ESD protection for GaP and AlGaAs is based chips is still necessary even though they are safe in low static-electric discharge. Material in AllnGaP, GaP, or/and InGaN based chips are STATIC SENSITIVE devices. ESD protection has to considered and taken in the initial design stage. If manual work/process is needed, please ensure the device is well protective from ESD during all the process..

■ Spec. Review History

Review Ver.	Date	Correction List	Etc.
Ver 1.0	2014.12.18	Established	
	+		

IWS-C3522-UV-XX5K1	12
--------------------	----